國立臺灣大學 104 年暑假基礎學科認證考試試題

題號:2011

科目:微積分甲上

題號:2011

共4頁之第/頁

• 全卷試題分為四大項: 壹、是非題; 貳、配合題; 參、填充題; 肆、計算題與證明題。試題總分共 125 分,成績計算方式 = 得分 × 0.8,再在個位四捨五入。

- 將答案寫於 試卷,並標示正確的題號。[壹]、[貳]、[参]的答案請依序寫在試卷之前兩頁。[肆]的答案從試卷第三頁寫起,題序不拘。
- 不准使用計算機、手機、平版。

壹、是非題

- 本大題每題 2 分,共 20 分。
- 答題請用 表示「是」、×表示「非」。任何解釋均不計分。
- (1) There exists a differentiable function on (0,2) such that

$$f'(1) \neq \frac{f(b) - f(a)}{b - a}$$
, for all $0 < a < 1 < b < 2$.

- (2) If f(x) is a differentiable function, so is $|f(x)| \cdot \sin(f(x))$
- (3) Suppose that f is continuous on [a,b] and $c \in (a,b)$ is a point such that $\lim_{x\to c^-} f'(x)$ dosen't exist. Then f is not differentiable at c.
- (4) If $\lim_{x\to\infty} \frac{f(x)}{x} = 0$, then f(x) has a horizontal asymptote.
- (5) Let $f(x) = \frac{P(x)}{Q(x)}$ be a rational function where P(x) and Q(x) are polynomials. The graph y = f(x) has a slant asymptote if and only if $\lim_{x \to \infty} \frac{f(x)}{x}$ converges to a nonzero number.
- (6) Suppose that f(x) is a differentiable function, and on an interval I the graph of f lies above all of its tangents. Then f'(x) is increasing on I.
- (7) Suppose the continuous function f(x) satisfies the property f(-x) = -f(x) (i.e. an odd function). The integral $\int_{-\infty}^{\infty} f(x) dx = 0$.
- (8) $\int_0^2 \tan^{-1}(\sin x) \ dx \le \frac{\pi}{2}$.
- (9) If f is continuous on [0, 1], then $\lim_{n \to \infty} \int_0^1 x^n f(\sqrt[n]{x}) dx = 0$.
- (10) If f is integrable on [a, b], then $g(x) = \int_x^b f(t)dt$ is differentiable on (a, b) and g'(x) = -f(x) for all $x \in (a, b)$.

題號:2011

科目:微積分甲上

題號:2011

共4頁之第2頁

貳、配合題

- (11)-(14) 每格正確答對者得 1 分,每題滿分為 3 分。本大題總分為 12 分。
- 請照試題在答案簿上畫出簡單表格填答。任何解釋均不計分。
- (11) Match each equation

(a)
$$f(x)=-|x\sin x|$$
 (b) $g(x)=\sin\frac{1}{x}$ (c) $h(x)=\frac{\sin x}{x}$ (d) $k(x)=\frac{\sin x}{|x|}$ with its property below.

(a)	(b)	(c)	(d)

- (A) It has both the absolute maximal value and absolute minimal value.
- (B) It does not have any absolute extreme values.
- (C) It has the absolute maximal value, but has no absolute minimal value.
- (D) It has the absolute minimal value, but has no absolute maximal value.
- (12) Match each function:

(a)
$$f(x)$$
 (b) $\frac{f(x)+f(-x)}{2}$ (c) $\frac{f(x)-f(-x)}{2}$ (d) $\frac{f(2x)}{2}$ with its graph below.

(a) (b) (c) (d)

(13) Match each equation

$$(a) \begin{cases} x = -\sqrt{t^2 - 1} \\ y = t \end{cases}, |t| \ge 1$$

$$(b) \begin{cases} x = \tan t \\ y = \sec t \end{cases}, \frac{\pi}{2} < t < \frac{3\pi}{2}$$

$$(c) \begin{cases} x = \sinh t \\ y = \cosh t \end{cases}, t \in \mathbb{R}$$

$$(d) \begin{cases} x = \frac{2t}{1 - t^2} \\ y = \frac{1 + t^2}{1 - t^2} \end{cases}, t \ge 0$$

with its graph below.

接次頁

題號:2011

科目:微積分甲上

題號:2011

共千頁之第3頁

(14) There are four functions defined on $x \in (0, \pi/4)$ and labeled as follow,

(b)
$$\cos x$$
 (c) $1 - \frac{1}{2}x^2 + \frac{1}{24}x^4$ (d) $x - \frac{1}{6}x^3$

(d)
$$x - \frac{1}{6}x^3$$

We rearrange the order of these functions to make them satisfy the inequality

Fill in the proper correspondence.

(a)	(b)	(c)	(d)

參、填充題

- (15)-(17) 每題 4 分。本大題總分為 12 分。
- 請直接在答案簿寫下答案。任何解釋均不計分。
- (15) Suppose $60 \le \alpha \le 100$. We want to identify a function f(x) satisfies the following conditions:
 - (a) Function f(x) defined over \mathbb{R} is of the form:

$$f(x) = \begin{cases} ax^2 + bx + c, & x \le \alpha \\ x, & \alpha < x \end{cases}$$

- (b) f(x) is continuous.
- (c) f'(x) is continuous.
- (d) The absolute minimum value of f(x) is 60.

Suppose the minimum occur at $x = \beta$, then $\alpha + \beta =$

(16) Let T be the triangle with vertices (0,0), (a,0) and (0,b) where a,b>0 (graphed below left). Suppose that a curve y = f(x) splits T into two regions R_1 and R_2 , with equal area. Let S_1 be the solid obtained by rotating R_1 with respect to the y-axis. Let S_2 be the solid obtained by rotating R_2 with respect to the line x=a. The difference of the volumes of S_1 and S_2 , $|V(S_1) - V(S_2)|$, is _

(17) Let S be the part of a sphere with radius r that an observer at height h above the north pole can see. The area of S is ____

題號:2011

科目:微積分甲上

題號:2011

共4頁之第4頁

肆、計算題與證明題

- 本大題總分為 81 分, 每題配分標於題號之後。
- 請完整與清晰的寫下計算或證明過程,只寫答案不計分。
- (18) [12pt] Find the limits:

(a)
$$\lim_{n \to \infty} \frac{1}{n} \left[\left(x + \frac{a}{n} \right)^2 + \left(x + \frac{2a}{n} \right)^2 + \dots + \left(x + \frac{(n-1)a}{n} \right)^2 \right]$$
(b)
$$\lim_{x \to \infty} \frac{1 + x + \cos x}{(x + \cos x)e^{\sin x}}$$
(c)
$$\lim_{x \to \infty} x \left(\sqrt{x^2 + 2x} - 2\sqrt{x^2 + x} + x \right)$$
(c) Interpretation

(19) [15pt] Evaluate

(a)
$$\int \frac{\sin^{-1} x}{(1-x^2)^{3/2}} dx$$
 (b) $\int_0^{\pi/2} \frac{1}{(3\cos x + 4\sin x)^2} dx$ (c) $\int_2^{\infty} \frac{7x^2 + 1}{(x^2 - 1)(x^2 + 1)^2} dx$.

(20) [7pt] Let (x(t), y(t)) parametrize the function curve of y = f(x) such that x(0) = 0, y(0) = 1. Suppose x(t), y(t) satisfy the following conditions:

$$\left\{ \begin{array}{lcl} \displaystyle \int_0^x \frac{1}{\sqrt{4-u^3}} \; du & = & t \\ & \displaystyle \ln y + 3 - 3y & = & t \end{array} \right.$$

Find the tangent line of y = f(x) at x = 0. What is the concativity of f(x) at x = 0?

(21) [7pt] Find the relative extreme values and the absolute extreme values of

$$f(x) = \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right) e^{-x}, \ x \in \mathbb{R}$$

where n is a positive integer.

- (22) [7pt] Find approximations of all solutions of the equation $x^5 + 5x + 7 = 0$ with error ≤ 0.05 . You should verify your estimation.
- (23) [8pt] Consider the polar curve $r = 1 + N \cos \theta$, N is a natural number (the figure at right is for the case N=2). Let A_N be the area of the shaded region.

- (a) Compute A_N .
- (b) Find the limit $\lim_{N\to\infty} \frac{A_N}{N}$.
- (24) [8pt] Show that if f is a continuous function on [0, 1] such that $\int_0^1 f(x)^2 dx = 0$, then f(x) = 0 for all $x \in [0, 1]$.
- (25) [8pt] Let f(x) be a continuous function on $(0,\infty)$ which is not identical to zero. Suppose that f(xy) = f(x) + f(y), for all x, y > 0. Show that $f(x) = \log_a x$ for some positive number a.
- (26) [9pt] Sketch the graph of the function $f(x) = \ln \left| \frac{x+1}{x-1} \right|$. (You must discuss the following: asymptotes; intervals of increase or decrease; local maximum and minimum values; intervals of concavity and the inflection points).